Functional Interfaces in Java

In this tutorial, we’ll explain how to use functional interfaces.

A functional interface has a single abstract method. It's recommended that we decorate it with the
@Functionallnterface annotation. This way, we can inform other developers that the interface should
contain only one method, which will likely be used in a lambda expression.

Let's see some standard functional interfaces that come with Java.

The Function Interface

The Function interface is a generic interface that accepts one argument and returns a result:

@Functionallnterface
public interface Function<T, R> {

R apply(T t);


https://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html
https://docs.oracle.com/javase/8/docs/api///java/util/function/Function.html

}

It contains the apply() method, which applies a function to a given argument and produces a result. The
type of an argument is defined with T, while the result is described with type R.

Let's see how to implement it. Suppose we’d like to define a function that will take a String and return its
length:

Function<String, Integer> length = new Function<String, Integer>() {
@Override
public Integer apply(final String s) {
return s.length();

}
h

We can simplify it further with lambda expression:
Function<String, Integer> length = s -> s.length();
Next, we can call the apply() method on any String:

length.apply(“Tom"); // returns 3

The Supplier Interface

Unlike the Function interface, the Supplier interface doesn’t accept any parameter but returns a value:

@Functionallnterface
public interface Supplier<T> {

T get();
}

We usually use it when we want to produce some result without taking any input. Let’'s see how to
implement it to generate random numbers:

Supplier<Double> generatedNumber = new Supplier<Double>() {
@Override
public Double get() {
Random random = new Random();
return random.nextDouble();

}
|8

Using lambda expression, the implementation would look like this:

Supplier<Double> generatedNumber = () -> {
Random random = new Random();
return random.nextDouble();

h

Then, we can call the get() method to return a randomly generated number:


https://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

generatedNumber.get()
The Consumer Interface

Moving on to the Consumer interface. It accepts the value but doesn’t return the result:

@Functionalinterface
public interface Consumer<T> {

void accept(T t);
}

We can use the Consumer interface when we need to perform some action on the value without returning
the result.

For instance, we can use it to print a given value in the standard output:

Consumer<String> printable = new Consumer<String>() {
@Override
public void accept(final String s) {
System.out.printin(s);

}
|5

Lambda expression equivalent:
Consumer<String> printable = s -> System.out.println(s);
We can call the accept() method and pass the String value we want to print:

printable.accept("This is cool.”);

The Predicate Interface

Lastly, let's see the Predicate functional interface. It consists of one method that accepts an argument and
returns a boolean as a result:

@Functionalinterface
public interface Predicate<T> {

boolean test(T t);

}

We often use this interface when we need to filter some data.
For example, we can create an implementation that checks whether a given value length equals 5:

Predicate<String> checkLength = new Predicate<String>() {
@Override
public boolean test(final String s) {
return s.length() == 5;

}


https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html

J§

If we use a lambda expression, the implementation looks like the following:
Predicate<String> checkLength = s -> s.length() == 5;

Let's call the test() method:

boolean b = checkLength.test(*Animal"); // returns true
Conclusion

In this article, we learned the most common functional interfaces in Java.

To summarize, each functional interface serves a different need. We use them when working on streams
of different data structures, such as collections.

Read More



https://ana-peterlic.com/functional-interfaces-in-java

